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This paper describes a new reversible staggered time-stepping method for simu-
lating long-term dynamics formulated on two or more time scales. By assuming a
partition into fast and slow variables, it is possible to design an integrator that (1)
averages the force acting on the slow variables over the fast motions and (2) resolves
the fast variables on a finer time scale than the others. By breaking the harmonic
interactions between slow and fast subsystems, this scheme formally avoids reso-
nant instabilities and is stable to the slow-variable stability threshold. The method
is described for Hamiltonian systems, but can also be adapted to certain types of
non-Hamiltonian reversible systems 2001 Academic Press
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1. INTRODUCTION

The numerical integration of nonlinear Hamiltonian systems underpins much of mod
computational science. In many applications such as molecular dynamics[7, 9], the syst
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96 LEIMKUHLER AND REICH

are characterized by a multiplicity of time scales, generally meaning that a qualitative
important dynamic is manifest on a time interval much greater than the period of the fas
local oscillatory mode. In most cases, the long time-scale phenomena are of greatest inte
but it is difficult or impossible to model the slow and fast parts separately; although th
local effect is weak, the fast components may—over a long period of time—make esser
cumulative contributions to the evolution of any state.

The application of standard numerical integration methods is complicated by the pr
ence of the fast modes. In many of the most important applications involving large-sc
Hamiltonian models, it is found that explicit, low-order integrators, such as threngt=
Verlet method, are the most effective. For a harmonic oscillator, the stability of a typic
explicit numerical method is determined by a condition of the féttw < D, whereAt
is the time step and is the frequency of the oscillator. Fordstriier—\Verlet, the constant is
D = 2, meaning that at least three or four time steps are needed per period of the mot
A similar condition has been found to hold in nonlinear systems, wheagethe highest
frequency present in the local linearization at any critical point. This stability restrictic
greatly limits the effectiveness of numerical integrators, and it is for this reason precis
that many interesting phenomena lie beyond the reach of simulation, even on the fas
computers available.

We distinguish two classes of multiscale phenomena. In the first class, the forces
potential energies) separate additively into a hierarchy from weak to strong. Sometir
such a hierarchy can be artificially imposed on the system [10]. This additive decomposit
can be used in the design of new methods, as in -RESPA [12], hierarchical variable ti
stepping [10], the mollified impulse method [2], and the methods of [9]. In the second cle
of systems, the variables themselves are associated to different vibrational scales. S
models could fall into either category, but others do not, since it may not always be e
or natural to partition the variables as opposed to the forces. In some cases, an approy
choice of coordinates may allow separation of the variables (see, e.g., [9] for an applica
in quantum—classical simulations).

Inthis article, we propose a “reversible averaging” (RA) method for the second category
multiscale mechanical models, based partly on the ideas of [2, 12]. Our method—which
be viewed as a generalization ob8tier-Verlet—does not require an additive decompositior
of the potential. (Indeed, the method could as well be generalized to certain types of n
Hamiltonian time-reversible systems.) A key difference between our method and others
have been recently proposed is that we propagate the “fast” and “slow” variables by entil
different numerical and analytical processes, taking advantage of the available separ:
of scales. The method described here does not appear to have a natural interpretatior
“splitting method,” a difference between our method and other approaches [2, 12] wh
appears to be key to avoiding instabilities. While the described approach is not symplec
it does preserve the time-reversal symmetry of the flow of a mechanical system.

2. REVERSIBLE AVERAGING

Our method is based on the enormously popularr8éi—\Verlet method applicable to
HamiltoniansH = %pTMflp + f(g), whereM is anN x N symmetric, positive-definite
mass matrix andf : RN — R is the potential energy. Viewed as a mapping of a poin
in phase spaceyff, p° to a new point ¢*, p'), one step of the Stiner—\Verlet method
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divides into three partgp"/2=p® — 2AtV, f (¢°), ot =+ AtM~*pY/2, andp’ =pY/2 —
%Atvq f (g). This method is explicit, time-reversible, symplectic, and second ord&t.in
Next consider a Hamiltonian of the form

%DTM_1P+ %WTM_lﬂ'-f‘ f(q.0), @)

whereq andp are the “slow variables,” and, due either to the structure of the potent
energy or to the variation in masses, the variaBlaad the momenta may be regarded as
“fast variables.” Our goal is to deffne a symmetric generalization ofrB¢i—Verlet which
incorporates an averaging on the fast degrees of freedom and, importantly, a more acc
integration of those variables.

The differential equations corresponding to (1) take the form

d d
ad= M~1p, i’ = -Vqf(Q, 0), 2
d - d
&0 =M1, 7= —Vef(q, ). )

We term (2) the “slow” subsystem and (3) the “fast” subsystem.

The way in which the fast variables are propagated in our algorithm depends on the p
lem. Assuming the evolution af to be known (described by = §(t)), observe that the
fast variables can be viewed as the solution of a reduced time-dependent nonautonor
Hamiltonian ﬁ[q(t)] = %wTM*lr + f(§(t), 8). Given the slow evolution, it may, in cer-
tain cases, be possible to recover the fast variables exactly, but in typical situations,
computation would be better effected by a numerical method. If the fast subsystem is ¢
stantially smaller than the slow one (as it is in many applications), then it is reasona
to think of solving this system more accurately than the slow one; thus, for example,
might introduce a reduction factoy M in the size of the time step used for the recovery
of the averages and propagation of the fast variables compared to the size of the outer
StepAt.

To illustrate the potential speedup from this method, consider the extreme scenari
which there aréNs slow variables and only one fast variable, and assume that all variabl
are coupled, so that the work to evaluate forces is proportiod§f@. On the other hand,
the work required to compute interactions between the fast variable and the slow varia
is proportional toNs. If Ngis large and the partitioning method can achieve even a sme
increase in the stability of the method with a valueMf« Ns, then the savings could
clearly be quite dramatic. These benefits would extend to systems with a few fast deg
of freedom, or to systems where the fast force calculation is for other reasons much
costly than the computation of the slow forces.

We next present the details of the method in mathematical form.

ALGORITHM 1  (Reversible Averaging Method for Two Time Scales).

Given:qP, p°, 6°, =°.

1. Compute the solutiord(.(t), 7 (t)) for HamiltonianH (e, starting from §°, #©) at
t=0.
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2. Slow variable half-step. Compute a time-averaged force

1 bAt 0
F, =—— Vq f (g7, 64.(1)) dt,
= pat ) Vaf@.e.m)
then apply the Stfimer—Verlet method to compute the position using this force:

At —
p1/2 = po + ?FJr,

qt = o + AtM1pY2,

3. Compute the solutiorg( (t), m,(t)) of thet-dependent Hamiltoniaki [amy], Starting
from (0°, %) att = 0, with §(t) moved along a linear pathj(t) = o° + tM~1p¥/2,
Next set

0" = 0.(At),
wl= . (Al).

4. Integrate the fast variab®_(t), backward in time, holding the slow variables fixed
atqt.
5. Slow momentum update. Compute

_ 1 At 1
F_=——/ Vo f (g, 0_(t)) dt.
bAt Ja_pat attd

Then update the momentum:

pt=p2 4 2F
2

An alternative would be to hold fixed at its half-step value during the fast propagatiorn
step (Step 3). The method would then be similar to a scheme given in [12]. To refer
this method in the sequel, we will call the resulting modified scheme @vtked atq'/?
during Step 3RA-Q and the method given above (with linear movemeng diiring the
fast propagationRA-1

Note that an appropriate scheme must be used to compute the finite time averag
Vqf (@, 8(t)). The precise way in which this is carried out may be very important for th
success or failure of the method in applications. If the force acting on the slow partic
is linear in the fast variable®, then the average to be computed for the slow momentur
updates becomes

This property eliminates much of cost of averaging. The same simplified averaging may
used wheneve? — (0) is sufficiently small. This issue is clarified in the following section
for several examples. In experiments described later, we found no advantage to avera
outside the interval defined by the outer time step- 1).

To see that Algorithm 1 is time-reversible, one needs to check that the inverse time-s
map with At replaced by-At is the same as the original map. To develop the inverse ma
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we work backward from the last step of the method. Giggnp'), one must first compute
the averaged forde_ beforep’/? can be computed. The backward averaging would be th
same as the forward averaging in Step 2 if we were to make the substitutions —At
andg! — . The computation gb'/2 andg/? by inverting Steps 6 and 4 is then analogous
to Step 2 of the algorithm with the same substitutionsaind> p°. Finally Step 3 is itself
symmetric since it is the flow of a reversible Hamiltonian system. Denoting the time-st
map by® »;, we concludeb~%, = ® .,

The usual property of time-reversal symmetry, i.e., a reversing symmetry with respec
the involutionR : (g, p) — (g, —p), then follows, since it is easy to verify that

Ro®Ppt =P at0R,
implying
RO@At OROCDA'[ = |d,

with Id the identity map.

The second-order convergence follows from (1) the one-step character of the method
its obvious consistency, and (3) its symmetry [3].

In Appendix A, the method of Algorithm 1 is extended to treat a multiplicity of time
scales, using successively smaller time steps to handle the faster sets of variables.

3. APPLICATIONS

Before continuing with analysis and numerical experiments, we mention several illust
tive classes of problems that could directly benefit from the use of the reversible averac
integrator.

First, consider an example from gravitation: the case of a “slow-moving” star field wi
a handful of fast binaries. We may view the positions and momenta of the binaries as
“fast variables.” To make the method efficient, we expect to replace the slow force aver
over the fast motion by the slow force evaluated at the average fast position, which shc
be reasonable under the assumption of no close approaches of the binaries to the other

Examples of a quite difererent nature involving a small mass arise in the context
various quantum-—classical models such as the Car—Parrinello method [1] and in simpli
approaches such as one encounters in polarization studies [11]. Here the “fast” varia
describe—perhaps crudely—the electronic structure, and the slow variables are assoc
to the locations of the atomic nuclei. Such models typically involve small fictitious ma
parameters which keep the associated kinetic energy of the electronic degrees of free
close to zero. Although in standard Car—Parinello approaches the fast forces dominat
computational cost, we believe that some of the more simplified models could benefit fr
the clear separation between the fast electronic degrees of freedoms and the slow cla:
degrees of freedom, through the use of our averaging approach.

As a third example, we consider quantum—classical molecular dynamics [4, 8]. We
especially interested in the case of very large systems, where a full nonadiabatic—quat
mechanical approximation is only needed for a small portion of the system such as
guantum—mechanical transition of a hydrogen atom. In the simplified case of a sin
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guantum degree of freedom, the quantum—classical energy takes the form

1
H(p, g ¢) = EpTM-1p+ (W, TY) + (¥, V@) + Uq (a),

whereT andV(q) are the spatial discretizations of the associated quantum Hamiltoni
operatorH = T 4+ V(q), and we have used, .) to indicate theL, inner product. The
method of Section 2 can be implemented with minor adjustments. Specifically, we fre:
g and p and obtainy (t) by solving a Schodinger equation. We compute the average
Hellmann—Feynman force acting on the classical coordinates from
1Mt - -

—;/0 (Y (©), VgV ¥ (1)) dt,
or the method suggested in [4]. Note that, due to the structure of the system, only a sil
evaluation of the classical forcesvgU.(g) and the matrix operatdv,V (q,) is required
per time step. The averaging over the quantum degree of freedom should be carriec
accurately to obtain the correct effective Hellmann—Feynman force. The same holds
for the propagation of the fast quantum degrees of freedom which should ensure the
lution of correct quantum occupation numbers. Here a linear propagation of the class
degrees of freedom (variant RA-1) should provide a significant improvement over vari
RA-O.

4. STABILITY

In [2], for linear or near-linear problems, instabilities were found to occur at certa
isolated values of the step size; they are artifacts of introducing resonance with the
modes of the problem into the discretized slow dynamics, and are therefore termed *“
size resonances.”

Our methods are also potentially subject to such resonances, and we study them in
section for a linear model problem. Whereas the RA-0 method is found to have re
nances neaat = 2k /w, k=1, 2, ..., it is shown that the RA-1 methodbes not have
any resonanceslthough there are potentially harmfikar-resonancedn the numeri-
cal experiments, we indicate how these step size resonances and near-resonances mx
themselves in nonlinear models.

For the purpose of understanding the resonances, let us introduce a linear Hamilto
system with energy

1 1 1 1
H=>p?4+ — 724 ~g?+ ~K(g — 6)2
2p+2Mn+2q+2(q )%,

whereu andk are parameters. For this analysis, we will tdke- w = 1/u. The linear
system has two sinusoidal components with frequenciesw_:

1/2
+ /2_40)2
Wy = (%) , n=a)2+a)+1.
For largew, we have
a)+~(1+a)+a)2)l/2~w,
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and

2 1/2
®
-~ | — ~ 1
(1+a)+a)2)

and we therefore term as the frequency of fast oscillation.

The solution behavior becomes even more apparent on going to the transformed
ordinatesq; :=q andq, := 6 — q. The corresponding canonical momenta are given b
p = p1 — p2 andmr = p,. Thus the transformed Hamiltonian is

1 1 1 1
Hz (0 — D)2+ — 02+ 02+ KA.
2(p1 p2) +2Mp2+2%+2 %

Takek = w = 1/u > 1. Then the system is well separated into a fast and slow compone
implying that the energy

Efast = %(pg + QZz)

of the fast degree of freedom is almost constant along solutions. Furthermore, providec
energyH is bounded, the variablp, is of orderw~/? and the energEsiow := H — Efast
satisfies

1
Esiow = > (p% + Qf) + O(a)—l/z).
Since
0=t+R=0q+0("?),

the variable follows q adiabatically at a distance of order?'/2.

We consider the application of the RA-0 or RA-1 method with exact resolution of tt
fast variables. Applying the method to the linear model problem, we obtain a linear mag
R*, the numerical propagator, which is a functioruofind At. An eigenvalue analysis can
then be used to examine the crossing points of eigenvalues which can give rise to resc
behavior.

4.1. Construction of the Discrete Propagator
The solution of the linear systefn= wr; 7 = —wf + y + t& with initial conditionss®
andx®is

O(t) = CL&(t) + Co8(t) + (v +1t8)/w;  m(t) = —C18(t) + Cob(t) + 8/,

whereé(t) = coqwt), §(t) = sin(wt). Also we write€ = €(At), § = §(At).

Force averaging and average value plugged into the force are the same for the li
problem. At the first step of RA-1, we average the fast position variable forward bafQ,
after computing withg = q°; hence we obtain

6 =©0°—q"S+7°C+q°
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where
S = sin(bwAt)/(bwAt), C = (1 — cogbwAt))/(bwAt).

The next step is propagation of the slow variables for a half-step,
1/2 0o, 1 1/2
Q7" =q + EA'[D
1 —
pY% = p = SALE + (@ - 0))

=p’— %At(q" - w((0° - g% S+ 7°C)).

We can already write the formula fqt:
9t = q° + AtpY2.

Now we propagate the fast variables. This step is different for RA-0 or RA-1. For RA.
we have

61 = C;6+ Cr8 4 q*2,

nl = —C18+ Cyt,
with constants
C1=9°—q1/2, C2=7To,
whereas, for RA-1, we have
6 = Ci&+Co8+ql,
p1/2
nl=—Ci8+Cot+ —,
w
with
Ci=60°-q°, Co=n"—"—.
In the next step of the algorithm, we solve the fast system backward, then average

substitute to compute the update of the slow momentum. However, the method is symme
so we must have

pt = pY2 - %At(ql — w((0* - gHS— ztCy).

The 4x 4 matrix propagators for each of the two methods are now easily formulate
These expressions are given in Appendix B. The following properties of these matri
(M (At) andN (At), respectively, for RA-0 and RA-1) have been verified for step sizes b
low the slow-variable stability threshold: (1) they are third-order approximations of the exa
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propagator, (2) they satisfy the symmetry propesty(—At) ™ = M(At), N(=At)~! =
N (A1), and (3) they are reversible with respect to the involution

10 0 O
01 0 O
R= 00 -1 o}’
00 0 -1
meaning that
RMRM =1,

with a similar equation fo. As a consequence of the reversing symmetry property ar
the fact that the matrix is real, the following properties hold for the spectrum,

1. If A € 0(M), then YA € (M),
2. If x € 0(M), theni € o(M),

with similar formulas for\. For example, one possibility for the spectrum is four distinc
eigenvalues—, A2, A1, Ao—all on the unit circleS. Another possibility is to have an
eigenvalue. off the unit circle, together with its reciprocal and the conjugates of those tv
numbers.

4.2. Stability, Slow and Fast Mode£rossingsand Resonance

Viewed as functions of the parametgt, we can think of the eigenvalues as describing
curves on or near the unit cylind&x R, where height is measured it. Such curves
are shown in Fig. 1 for the RA-0 method. Four curves are shown, one for each eigenve
As the time step parameter is increased = 0, the four eigenvalues separate from unity.
Observe that two eigenvalues move around the circumference of the cylinder; the other
eigenvalues slowly separate near one.

Each of the conjugate eigenvalue pairs of the propagator can be viewed as an approx
tion to either the fast or the slow mode of the continuous problem. Exponential instabil
arises when the eigenvalues move outside the unit circle. Resonant instability is assoc
to degeneracy of the eigenspace of the problem, a necessary condition for which is cros
of eigenvalues. However, not all eigenvalue crossings cause problems for the discrete
namics, and near-crossings can also cause problems in the numerical simulation. A b
indicator of resonance than crossings is the largest eigenvalue condition number, define
the reciprocal of the cosine of the angle between the left and right eigenvectors associ
to an eigenvalue; near points of degeneracy of the matrix, the eigenvalue condition num
tend to infinity.

In Fig. 2, the real and imaginary parts of the eigenvalues of the mattifRA-0) are
shown for the step size interval [0.001, 0.041] and the imaginary parts on subintervals 1
the first two crossings. The large interval figures are visually identical for the RA-1 methc
but there are significant differences in the detail near the crossing points; these are st
in Fig. 3. As the step size is increased, the slow eigenvalue pair moves monotonicall
the left while the fast eigenvalues repeatedly orbit the unit circle. For both the RA-0 a
RA-1 methods, crossings of the fast eigenvalues are found in the vicinity of the poi
7/w, 2nw, 3rw, etc., while the slow eigenvalue/fast eigenvalue pairs approach very ne
to even multiples ofr/w.
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FIG. 1. Eigenvalues of RA-Op = 100. The eigenvalues of can be viewed as curves near the unit cylinde
with height parameterized by the timest&f instabilities can occur near eigenvalue crossings, either because t
eigenvalues leave the cylinder or because of degeneracy of the eigenspace.

Evaluating the matricest and\ at each of the fast—fast crossings is straightforward. Wi
now take a closer look at the structure of these propagators. The real Schur decompos
of a matrix A is written A = QT Q, with Q orthogonal andr' block upper triangular;
the properties of the powers of the matixcan be understood in terms of the associate

1 1
o i WVVWVWVW
=1 =1

001 0.02 0.03 0.04 ’ 001 0.02 0.03 0.04
At At

Rel
=
ImA

Im
=

3
o
: ><
<001
={,005
—0.02
=0.01 * —+ =003

3035 A4 345 AL 626 628 63 632
At x10” At x10”

FIG.2. RA-0 eigenvalues as function of the step sizer 1000. Clockwise from upper left, real parts of the
eigenvalues on a long interval in the step size, imaginary parts of the eigenvalues on a long interval, imagi
parts, short interval near an even multiplewt, short interval near an odd multiple of w.
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FIG. 3. Imaginary parts of eigenvalues, RA-1, near first two multiplestoé» = 1000. Note the close
approaches (“avoided crossings”) of eigenvalues which imply that instability (resonant or exponential) is
encountered.

properties of the matriX . After a suitable coordinate transformation, we have the2
block decomposition

S C
-[o el
where S corresponds to the “slow” variables, a@dand F act on the fast variables. At
the odd multiples ofr, we have, for both RA-O0 and RA-F; = —I,C = O(1), and S

is a representation of the discrete propagator corresponding todiraedtVerlet method
applied to just the slow modes, which is a stable matrix (separated eigenvalues on the
circle) forw_ At < 2. We note that

N SN BnC
"o (—1)N+1) ’

where

N-1
Bv=(-D"> (=9 =DV 1+ SN +97h
i=0

Clearly SN and alsoBy are bounded. Moreover, this means thias power bounded.

At the even multiples ofr /w, the picture is similar except thét) F = |, (2) for RA-O,

C turns out to beD (At), while (3) for RA-1,C = 0; the situation with respect to fast—fast
resonances is only improved.

We next turn our attention to the potentially more serious case of slow—fast crossir
which occur at two points near each even multiplergfo. We first note that there is an
instability in RA-0 just to the left of the even multiples ofw. The reader is referred
to Fig. 1 for an illustration of the situation. Here, two slow—fast crossings are observ
These points are associated to reversible Hopf bifurcations [6] (the reversible analogu
symplectic Krein-crunch bifurcations), in which two unit-modulus eigenvalues (and the
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FIG. 4. Eigenvalue condition numbers for RA-®,= 1000.

complex conjugates) of a reversible matrix coalesce and leave the unit circle. In fact th
is a narrow band between the two crossings where a pair of eigenvalues moves off the
circle.

On the other hand, the slow and fast eigenvalues for RA-1 come clos#o matt cross
(See Fig. 3.) This remarkable feature of the RA-1 method is the likely explanation f
its marked superiority to RA-0 in large stepsize integration, as we will see in the ne
section. For this reasohe RA1 method does not exhibit any resonant or exponentia
instability below the stability threshold for the Verlet method applied to the slow subsyste
The RA-1 propagator is power bounded regardless of stepsize (up to the slow varic
stability threshold), although that attained bound may be relatively large in the vicini
of near-crossings of the eigenvalues (at two points in the vicinity of even multiples
T /w).

The eigenvalue condition numbers reflect these observations.egresent the largest

of these for any given value of the stepsize, Adrin the interval [0.001, 0.011]. In Fig. 4,
Kk is graphed against the stepsize for the RA-0. We see that the eigenvalue condition nur
is moderate for most of the interval considered, but becomes quite large just to the lef
27 /w. Close-ups show that there are two sharp peaks, well correlated to the eigenv:
crossings discussed above.

The situation for the RA-1 method is quite different. Corresponding graphsat
shown in Fig. 5. Only a relatively mild increase in condition number can be seen at or n
the points where the fast and slow eigenvalues/dfiave close approaches on either side
of 2 /w.

5. NUMERICAL EXPERIMENT

We implemented the two-scale RA method with numerical averaging of the fast va
ables using the Stimer—Verlet method. Our aim in this experiment was to show that th
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FIG. 5. Eigenvalue condition numbers for RA-<,= 1000.

reversible averaging method performs stably in the large step size regime, thus we |
neglected performance and efficiency issues and concentrated only on demonstratini
convergence and accuracy of the method at stepsizes at or abovertheiS¥erlet stability
limit.

We simulated a pair of masses moving in the plane in the potential

1 1
qu=§wrﬁf+ym—m?

Physically,q represents the position of a massive particle attached through a soft spr
with unit rest length to a fixed point at the origin; a second moving particle (at posijion
is connected to the first by a harmonic spring with coefficier# unit mass is assumed for
the first bob, while the second is treated as a parameté is large and/op is small, we
have a two-scale dynamical system. This can be seen by going to transformed coordir

(0, Gp, P1. Po) defined by
ay _ (I 0)\/q Py _ /1 =l Py
@-( )6 = (-6 )6
The corresponding tranformed Hamiltonian is
1 1) 1 w
H = S1ps = pol® + S 1P2l” + S (1l = D + 516"
The energy

w
sz?%ﬁﬂ%%
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of the fast degrees of motion is an adiabatic invariant [1}fgs> 1 and, hence, is almost
preserved along solutions. Thus the slow degrees of freeggm| stay close to the energy
surface

1 1
Esow = 5 IP1* +5 (1o = %
Furthermore, since
0=t +%=0+0("?),

the fast variablé@ follows g adiabatically at a small distance of order'/2.

A related—though more complex—model in molecular dynamics would be the classi
water molecule which has a heavy central oxygen and two lightweight hydrogens c
nected to the oxygen by what are effectively stiff springs (in addition to other interacti
forces).

We chosec = 1000 andu = 0.001, so that we had a strong fast mode (with high fre-
guencyw = /k/u = 1000, distinguishing two important cases for the initial conditions.
In data set A, we took® = (1, 0), 8° = (1, 0), p® = (0, 1), and#° = (0, 0.05), so that
a substantial fast energy is present at the initial point. The trajectory for these init
data is shown in Fig. 6. In data set B, the initial conditions were the same as in date
A, exceptw® = (0, 0); in this case, all the initial energy is present in the slow compo
nents.

When the system is solved with theoBtier—\erlet method, the stepsize is restrictec
approximately according to the condition

Atk /< 2.

For example, wher = 1000 andu = 0.001, as in our experiments, the theoretical condi-
tion is At < 0.002. In our experiments, and for both data sets A and B, thefatr=Verlet
method indeed became unboundedat= 0.002.

18 A
2.0 0o 2.0

FIG. 6. Trajectories of the two-particle spring—-mass system, showing the heavy particle motion (bold) &
the oscillations of the light particle (light).
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FIG. 7. A log—log scale diagram of the energy error vs step size summarizes improvements from the
scheme.

Both variants of the RA method are substantially more accurate thandhe&tVerlet
method below the stability threshold. We ran experiments for 1600 values of the step
betweenAt = 0.0001 andA = 0.016. The resulting maximum energy errors observe
were then plotted against the stepsize, in log—log scale (see Fig. 7). In the high-accu
(small stepsize) regime, the RA method offered substantial improvement oveotheest”
Verlet method. This is a consequence of the fact that the solution includes a large hic
oscillatory component, so that the error is dominated by the approximation of the f
mode. Therefore, the 20step size reduction for the averaging methods translates intc
400x accuracy improvement below the stability threshold. Moreover, the stable long-te
energy behavior typically seen for symplectic and time-reversible methods was obsel
for both the RA-0 method (away from resonances) and the RA-1 method at all step si
considered.

The RA-0 method if = 1, M = 20) remained bounded for substantially larger stej
sizes than the Stimer—Verlet method, up to abontt = 0.00628, the location of its first
step size resonance. When the RA-1 method was used the results were quite diffe
Both the overall accuracy of the simulation and the stability behavior were vastly ir
proved. Interestingly, if one looks closely in the vicinit = 7 /w, one finds a modest
rise in the errors, indicating a lessening of stability associated with the fast eigenva
crossing.

We next examined the behavior of the numerical methods for data set B, for wh
the initial energy is confined to the slow modes. Because of the nonlinear nature of
problem, the high-frequency mode is quickly excited in the Verlet method leading to the sa
instability observed for the excited highly oscillatory initial data. However, very differer
results are obtained for the interpolated RA-1 method (see Figs. 8a—8c). At first glar
there is no evidence of instability near 0.00314 and only a high resolution in the step ¢
turns up the slight (but smoothly rounded) bump at long atep- 0.003138, and another
such bump near2/w. However at none of the steps considered was there any eviden
of the secular growth in energy error that would be associated with a step size re
nance.
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FIG. 8. Efficiency diagram for dataset B. The RA-1 method shows a clear advantage because of the elim
tion of resonance.

More importantly, there is no evidence of any fast—slow resonance near, ®r at any
other multiple ofr /w up to the Sbimer—Verlet stability threshold. This desirable effect is
only observed for the RA-1 method. It was also observed that a substantial improven
in accuracy is obtained from the interpolated averaging method compared with both
Strmer—Verlet and RA-0O methods.

5.1. Anharmonic Fast Potentials

The desired effect of the anharmonic potential term is a weakening of resonance effe
Itis interesting to ask how far this can be taken when a slight anharmonicity is also pres
in the fast potential. We further examine the effect of a nonlinearity on the interpolat
averaging method (RA-1) by adding a quartic term to the fast potential, viz,

1 1 1
V(@ 6) = 5(lal) - %+ Sla- 01> + 2pla- 0|*.

In our experiment, we chose = (0.01, 0) and tooks = 0.1. For these initial conditions,
the slow particle follows very closely the trajectory of the= 0 case, while the rapid
oscillations of the fast particle are confined to a very narrow range. We again used 20
steps per long time step.

Considering first the interval of stepsizes [0.0001, 0.012], we observed very simi
behaviors to those obtained without the quartic term. Near each of the three resonance p

-3

x 10
0.02 2 0.08
ﬂb/ﬂ‘. .'(\Jﬂll
0.015 15h j | [\ A 006
= \ m | ..\ | & lﬂl
< / < i = I
0.01 | | A 1 Ll 0.04 |
| |II \ | | |'| |
0.005 ||| \ 05 || || 0.02 an
= J e I F___,/ \| k—__
e o '.I 0 — |
3.135 3.14 3.145 6.255 6.26 6265 9.33 9.34 9.35
At x 107 At x107° At x107°

FIG. 9. Energy error vs step size near harmonic resonance points, anharmonic fast potential.
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FIG. 10. Very large step size behavior.

(At = n/w, 2 /w, and 3t /w) of the harmonic problem, we see a rise in the amplitude o
energy—error variation, but no secular drift in energy (see Fig. 9).

Next we looked at the step size interval [0.012, 0.5]. In general, the method exhibi
instability as the small step size used to integrate the fast varighledv) crossed the
Stormer—Verlet stability boundary, so a large valid = 200, or M = 400, depending
on the long stepsize) was needed to insure that error in the fast-variable simulation
not seriously affect the results. Remarkably, even in this extremely large step size regi
excellent results were obtained from the averaging method. The energy error is show
Fig. 10 for 1000 values oAt between about 0.3 and 0.5. Also shown is the maximun
fluctuation in the fast energy adiabatic invariant for each of these runs (the energy error
fast energy fluctuations are roughly correlated).

Trajectories near the linear resonant points—even at the largest peaks of the en
and fast energy fluctuations—are reasonably well resolved. Long simulations (10,000 |
time steps) at the worst peaks of the resonance diagram are shown in Fig. 11. Only a
very largest of these stepA{ = 0.49) does an unphysical regularity characteristic becom
evident in the slow dynamics.

At=306 At=402 At=49

FIG. 11. Very large step size behavior.
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6. CONCLUSION

We have presented an averaging integrator for multiple-time-scale dynamics which
solves the fast variables differently than the slow ones. Compared to dhaest-\Verlet
method, the new method appears to substantially improve both accuracy and stability
haviors in the large time step (inaccurate) computational domain, although the techni
awaits careful evaluation in a challenging application such as molecular dynamics. T
observations of this article amply justify such continued study.

APPENDIX A

Methods for Several Fast Variables and Multiple Time Scales

Here we consider a Hamiltonian system witlime scales,

1 _ 1 _ 1 _
SPIMITPy+ 5Pz Mo P+ 4 SATMTE + TGy G ).

We assume that threclasses are roughly ordered according to increasing speeds of os!
lation. A recursive adaptation of reversible averaging is then possible whereby succes
groups of variables are treated with successively smaller time steps.

We will assume the simplest procedure in which the steps decrease geometrically a:
treat the faster sets of variables; this is not an essential feature of the scheme. Algorith
demands increasingly more computational work in the faster time scales; this work
consistent with the increasing difficulty of resolving those motions.

ALGORITHM 2 (Reversible Averaging Method for Systemsrofime Scales).
Compute a step of sizet from given initial valuegqS, . .., ®) and(p?, .. ., pP) for the
Hamiltonian H.

0. If there is only one fast time scale, apply Algorithm 1.

1. Recursively apply this algorithm for tire— 1 fast scalesH reduced by freezing
o, = @?), denoting the solutions in theh time scale by (D).

2. Slow variable half-step. Average the slowest forces over the fast position values
obtain

Fri=— (Vg f(& G ..., QD))

then
p1/ =p(1)+7F1,+,
172 At 1 12
Q1/ =qg+?M 1p1/~

3. Recursively apply this method to integrate the fast subsystenmHmidduced by, =
Gu(t) (variant RA-0: 41 (t) = ¢;’%; variant RA-1: G1(t) = of + tM~1py’?), computingM

steps with stepsizat/M, resulting in

1 1 1
G 03 -5 G
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and

1 A1 1
P3, P3, - - -5 Pr-

4. Updateq to end of step:

1/2

1
of =" + SAtMpy”

5. This step is analogous to Step 1, but we start with initial values for the fast variab
at the right endpoint of the step, and step back in time, again using this method.
6. Compute the averaged slow fofeg_ and update the slow momentum to end of step

, At -
pi = pi/ + 7':1.,—

APPENDIX B

Matrix Propagators for RA-0 and RA-1

Let. M representthe propagator for RA-0 akidhe propagator for RA-1. Lefg, Ag, Ap,
andA,, represent the coefficients f 8, p, andr, respectively, in the expression fpt/2.

=

qu—%(m+§), Ag=25 A =1, An=%(1—é)-

The matrix M can be expressed as

1.0+ AtAq AtAy AtA, AtA,
Mo AL-01+5xA) FA-0OA+C FA-0A, FA-0OA +8

Ma3y M3 M3 Maa

$(1+ 5HAq) -5+ 584 A5A, c+ S8A,

where the third row elements are given in terms of those of the forth row:

1 R 1, 1 ~
Mz = Aq — E(At + M+ ESle - 5(1 — O May,

1 R 1. 1 A
Mazr=Ag — E(At + Mz + ESMzz - E(l — C) My,

1 . 1, 1 ~
Maz = Ap — E(At + S Miz+ ESMgg — é(l — C) Mags,

1 R 1. 1 R
Mazg = A; — E(At +S9Mus+ ESMM - é(l — O Maa.

The matrix\ can be expressed as

1.0+ AtA, AtA; AtA, AtA,
N |[1-EHAt=8w)xAg E+ (At =8/w)x Ay (At —8/w)A; S+ (At —S/w)A,
o 31 NSZ NSS N34 ’

5§+ (1—0)A /o 5+ (1-0AJo (A-0A o E+(1-0A, /v
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where the third row elements are given in terms of those of the forth row:

1 R 1. 1 ~
Nar= Aq — E(At + SN+ ES/\/Zl - 5(1 — O Naa,

1 1 1
Nz = A — E(At + 8Nz + 53/\[22 - 5(1 — ONaa,

1 . 1, 1 X~
Naz = Ap — E(At + 8Nz + ESN% — E(l — &) N3,

1 1 1
Nag= A, — E(At + N1+ 53/\/24 - 5(1 — O Naa.
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